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Abstract

The first part of this document is dedicated to the pricing of undiscounted Vanilla Options: we
compute the price and sensitivities of Calls and Puts, and highlight the different FX Delta conven-
tions.

The most important application of specific FX market conventions (and particularly Deltas
conventions) is the FX smile construction. Indeed, the way the smile is described in forex market
radically differs from other asset classes (equity, commodity...), requiring a specific procedure to
recover the smile as a function of strike. In the second part of this document, we present two
different approaches for the construction of one smile maturity slice. We apply both approaches
to the calibration of UsdJpy 6 Months maturity smile and discuss the results.

keywords: Fx Conventions, Market Strangle, Fx Smile Calibration, SVI volatility

1 Introduction: Model and Conventions

Let denote X12, one unit of Currency1 quoted in Currency2 (the risky asset is the Currency1 measured in
Currency2). We assume that X12 follows the Garman-Kohlhagen differential stochastic equation:

dX12 (t)
X12 (t)

= ∆r̃12dt +σ12dWt

with ∆r̃12 = r̃2− r̃1, each r̃i denoting the swap rate and basis if the currency-i is not USD, or the swap rate
only if currency-i is USD. This stochastic differential equation has a unique solution:

X12 (T ) = X12 (t)exp
((

∆r̃12−
σ2

12
2

)
(T − t)+σ12 (WT −Wt)

)
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The Forward price The T -maturity forward price of X12 at time t, is given by:

F12 (t,T ) = E [X12 (T )] = X12 (t)exp(∆r̃12 (T − t))

The Forward value The forward with a maturity T, and a strike (K is the forward price K agreed upon at
inception that makes the forward value zero), has the (undiscounted) value:

f12 (t,T ) = F12 (t,T )−K

Actualization Factor Finally, we assume that the actualization factor Act2 (t,T ) in Currency2 is indepen-
dent from the forex dynamics, and applies as a multiplier to prices formula. Since Act2 (t,T ) depends on the
collateral agreement of the trade (see [1]), we have decided to present all the results as undiscounted.

2 Vanilla Prices and Greeks

In this first part, we compute the Call and Put prices and their greeks.

2.1 Call and Put prices

With the same notations, undiscounted Call price C and Put price P are given by:

C (F12 (t) ,T,K,σ12) = F12 (t,T )N (d1)−KN (d2)

P(F12 (t) ,T,K,σ12) = KN (−d2)−F12 (t,T )N (−d1)

with

d1 =
1

σ12
√

T − t

(
ln
(

F12 (t,T )
K

)
+

σ2
12
2

(T − t)
)

d2 =
1

σ12
√

T − t

(
ln
(

F12 (t,T )
K

)
− σ2

12
2

(T − t)
)

2.2 First Order Greeks

In this section we compute the first order sensitivities of option prices to their underlying parameters. Here
again, we compute options Greeks for undiscounted options prices, and discounted Greeks can simply be
deduced by multiplying undiscounted ones with Act2 (t,T ), the relevant actualization factor in Currency2 .

Throughout this section, to compute Greeks, we will extensively use the symmetry relationship between
(F12 (t,T ), n(d1)) in the one hand, and (K,n(d2)) on the other hand:

F12 (t,T )n(d1) = Kn(d2)
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2.2.1 Theta

When practitioners manage a portfolio of derivatives, the Theta is certainly - among all sensitivities - the
one the more attention is paid to, because it clearly shows the breakeven of the Theta-Gamma PnL. The
theoretical Theta for undiscounted Call and Put are given by:

ΘC =−∆r̃12F12 (t,T )N (d1)−Kn(d2)
σ12

2
√

T − t

ΘP = Kn(d2)
σ12

2
√

T − t
+∆r̃12F12 (t,T )N (−d2)

This Theta calculation is mostly theoretical, and is not the one used in practice. Not only because our
formula are not discounted and the discount factor Act2 (t,T ) does contribute to the Theta, but also because
computing the impact of passage of time involves moving along curves (rate, term structure of volatility...)
that are not flat, and have an impact on the result. For this reason, in practice, the Theta calculation must be
performed under explicit assumptions (e.g. does the spot rate remain constant or does it follow the forward
curve?...).

2.2.2 Deltas

The Delta is the quantity (the Delta is adimensional) of risky asset -i.e. Currency1 - that must be held against
an option in order to be hedged with respect to Forex spot moves.

But unlike options on equity, forex options can be settled either in Currency2 or in Currency1 (the risky
asset), and in this last case, the Delta must be adjusted (we say ’Premium Adjusted Delta’) to account for the
premium. Then, the premium converted in Currency1 must be substracted to the regular Delta (the premium
comes as opposite to the regular Delta) to give the hedge amount.

On G10 currencies, the market convention distinguishes maturities above and below one year: below one
year, options are hedged with spot Deltas, while above one forward Delta is used instead to simultaneously
hedge swap point sensitivity. On emerging currencies, since swap points are more volatile, forward Delta
hedge prevails for all maturities.

In this section, in addition to Call and Put Deltas, we compute the strike of the Delta Neutral Straddle
(DNS), (the straddle with a strike such that the Call Delta + the Put Delta have a zero sum) and the Delta of
its both legs.

2.2.3 Unadjusted Spot Delta

Undiscounted spot deltas of Call and Put are given by:

∆
C
S = exp(∆r̃12 (T − t))N (d1)

∆
P
S =−exp(∆r̃12 (T − t))N (−d1)

Discounted deltas are deduced from undiscounted ones by just multiplying them with the Currency2 relevant
discount factor Act2 (t,T ).
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Call / Put Delta Parity The delta Call/Put parity of undiscounted vanilla options is

∆
C
S −∆

P
S =

∂C
∂X12

− ∂P
∂X12

= exp(∆r̃12 (T − t))N (d1)− exp(∆r̃12 (T − t))(1−N (d1))

= exp(∆r̃12 (T − t))

DNS Strike and Legs Deltas

∂C
∂X12

+
∂P

∂X12
= 0⇒ N (d1) = N (−d1) =

1
2

It follows that d1 = 0, and from d1 definition, the ATM strike KAT M must be:

KAT M = X12 (t)exp
((

∆r̃12 +
σ2

12
2

)
(T − t)

)
= F12 (t,T )exp

(
σ2

12 (T − t)
2

)
Deltas of undiscounted DNS Call and Put legs are given by:

∆
C-ATM
S =

1
2

exp(∆r̃12 (T − t))

∆
P-ATM
S =−1

2
exp(∆r̃12 (T − t))

and discounted ones are deduced by multiplying with Act2 (t,T ).

2.2.4 Unadjusted Forward Delta

Instead of spots, forward contracts can be used to hedge vanilla options. The Delta of undiscounted options
with respect to undiscounted forward are given by:

∆
C
F = N (d1)

∆
P
F =−N (−d1)

The formula for discounted options with respect to discounted forward is the same as the formula for
undiscounted options with respect to undiscounted forward (presented above), as long as both options and
forwards are managed under the same collateral agreement.
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Call / Put Delta Parity The undiscounted forward Delta of undiscounted Call / Put parity (or equiva-
lently the forward Delta of discounted Call / Put parity) is given by:

∆
C
F −∆

P
F =

∂C
∂ f12

− ∂P
∂ f12

= N (d1)+(1−N (d1)) = 1

DNS Strike and Legs Deltas

∂C
∂ f12

+
∂P

∂ f12
= 0⇒ N (d1) = N (−d1) =

1
2

It follows that d1 = 0, and the ATM strike KAT M must be:

KAT M = X12 (t)exp
((

∆r̃12 +
σ2

12
2

)
(T − t)

)
= F12 (t,T )exp

(
σ2

12 (T − t)
2

)
Undiscounted forward Deltas of undiscounted DNS (or equivalently, forward deltas of discounted DNS)

Call and Put legs are given by:

∆
C-ATM
F =

1
2

∆
P-ATM
F =−1

2

2.2.5 Premium Adjusted Spot Delta

If the undiscounted premium (CPrem for the Call or PPrem for the Put) is paid in risky currency, the spot Delta
must be adjusted accordingly. The undiscounted spot Deltas of premium adjusted Call and Put are given by:

∆
C
PS =

K
X12

N (d2)

∆
P
PS =−

K
X12

N (−d2)

Call / Put Delta Parity Undiscounted Call / Put premium adjusted spot Delta parity is given by:

∆
C
PS−∆

P
PS =

K
X12

N (d2)+
K

X12
(1−N (d2)) =

K
X12
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DNS Strike and Legs Deltas

∂C
∂X12

− C
X12

+
∂P

∂X12
− P

X12
= 0⇒ N (d2) = N (−d2) =

1
2

It follows that d2 = 0, and from d2 definition, the ATM strike KAT M must be:

KAT M = X12 (t)exp
((

∆r̃12−
σ2

12
2

)
(T − t)

)
= F12 (t,T )exp

(
−σ2

12 (T − t)
2

)
Premium adjusted spot Deltas of undiscounted DNS Call and Put legs are given by:

∆
C-ATM
PS =

1
2

KAT M

X12
=

1
2

exp
((

∆r̃12−
σ2

12
2

)
(T − t)

)
∆

P-ATM
PS =−1

2
KAT M

X12
=−1

2
exp
((

∆r̃12−
σ2

12
2

)
(T − t)

)

2.2.6 Premium Adjusted Forward Delta

If the undiscounted premium (CPrem for the Call or PPrem for the Put) is paid in risky currency, the forward
Delta must be adjusted accordingly. The undiscounted premium adjusted forward Deltas for Call and Put
are given by:

∆
C
PF =

K
F12 (t,T )

N (d2)

∆
P
PF =− K

F12 (t,T )
N (−d2)

Here again, the formula for discounted options with respect to discounted forward is the same as the
formula for undiscounted options with respect to undiscounted forward (presented above), as long as both
options and forwards are managed under the same collateral agreement.

Call / Put Delta Parity The premium adjusted undiscounted forward Delta of undiscounted Call / Put
parity (or equivalently the premium adjusted forward Delta of discounted Call / Put parity) is given by:

∆
C
PF −∆

P
PF =

K
F12 (t,T )

N (d2)+
K

F12 (t,T )
(1−N (d2)) =

K
F12 (t,T )

DNS Strike and Legs Deltas

∂C
∂ f12

−∆
C-Prem
F +

∂P
∂ f12

∆
P-Prem
F = 0⇒ N (d2) = N (−d2) =

1
2
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It follows that d2 = 0, and from d2 definition, the ATM strike KAT M must be:

KAT M = X12 (t)exp
((

∆r̃12−
σ2

12
2

)
(T − t)

)
= F12 (t,T )exp

(
−σ2

12 (T − t)
2

)
Undiscounted forward Deltas of undiscounted DNS (or equivalently, premium adjusted forward Deltas

of discounted DNS) Call and Put legs are given by:

∆
C-ATM
PF =

1
2

KAT M

F12 (t,T )
=

1
2

exp
(
−σ2

12 (T − t)
2

)
∆

P-ATM
PF =−1

2
KAT M

F12 (t,T )
=−1

2
exp
(
−σ2

12 (T − t)
2

)

2.2.7 Vega

The Call / Put parity ensures that call and put Vegas for a given strike are the same. The undiscounted Vega
V is given by:

V = n(d1)F12 (t,T )
√

T − t = n(d2)K
√

T − t

2.3 Second Order Greeks

In this last section we compute (some) second order sensitivities. There is no market convention for such
sensitivities because -unlike Deltas - there is no second order sensitivities exchanged at trade inception. In
the following we dont compute all combinations of second order Greeks but we rather restrict our focus on
sensitivities effectively used for risk management.

2.3.1 Gammas

When options are paid in Currency1 (and Delta is premium adjusted), the Gamma must be adjusted as well.

Unadjusted Gamma From unadjusted Call / Put Delta parity we see that the Unadjusted Gamma of
the put and the call are equal. The undiscounted Gamma is given by:

Γ = exp(∆r̃12 (T − t))n(d1)
1

X12σ12
√

T − t

Premium Adjusted Gamma When the Delta is premium adjusted, the delta Call / Put parity shows
that the premium adjusted Gamma of the Call and the Put differ: the premium adjustment is actually a
convex function of the spot (the premium is converted back in Currency1), and as such, will contribute to
the Gamma. Consequently, undiscounted premium adjusted Gamma for the Call and Put are different and
are given by:
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Γ
C =

F12 (t,T )
X2

12

(
n(d1)

σ12
√

T − t
+N (d1)

)
+

K
X2

12
N (d2)

Γ
P =

F12 (t,T )
X2

12

(
n(d1)

σ12
√

T − t
−N (−d1)

)
+

K
X2

12
N (−d2)

2.3.2 Vanna

The call put delta parity shows that the Vanna of a call is the same as the Vanna of a put with the same strike
(the vega is the same for a call and a put with the same strike, so is their derivative with respect to the spot).
The undiscounted value of the vanna can be expressed as a function of the Vega, and is given by :

Vanna =−exp(∆r̃12 (T − t))n(d1)
d2

σ12
=

V
X12

(
1− d1

σ12
√

T − t

)

2.3.3 Volga

The Volga (volatility gamma) is the second derivative with respect to the volatility, or the derivative of the
Vega with respect to the volatility. The undiscounted Volga is given by (V denotes the undiscounted vega) :

Volga = n(d1)F12 (t,T )
√

T − t
d1d2

σ12
=V

d1d2

σ12

Vanna-Volga management The Vanna-Volga method is a pricing method popularized among forex
practitioners to price first generation exotic option in absence of a sophisticated volatility model. In a nutshell
(see [2] for a full description), the main idea is to add to the Black-Scholes price of the exotic product, the
cost of a portfolio of Risk-Reversal and Strangle options that matches both the Volga and Vanna sensitivities
of the exotic product.

2.3.4 Delta Decay

The Delta Decay is the sensitivity of the Delta to passage of time:

DeltaDecayC =
∂C

∂X12∂ t

DeltaDecayP =
∂P

∂X12∂ t

The Delta Decay must be closely followed when managing a vanilla book, especially when options are close
to their maturity: options Delta may vary a lot from one day to another (depending on how far the strike is
from the spot) and requires some anticipation.

But just like the Theta computed above, the result is not really usable (because of rate curve, volatility
curve...) as is. That is why we have decided that the Delta Decay computation will be left as an exercise for
the reader.
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3 Forex Smile Market Conventions

3.1 Forex Smile Description Format

For a given maturity, the volatility smile is commonly described by only five data:

σATM ATM volatility
∆σRR25 25% Delta Risk Reversal
∆σMS25 25% Delta Market Strangle
∆σRR10 10% Delta Risk Reversal
∆σMS10 10% Delta Market Strangle

• ATM volatility generally denotes for G10 currencies the ATM zero delta, i.e. the strike of a Delta
Neutral Straddle (DNS). But for some emerging market, (e.g. South American currencies) ATM
volatility denotes At the money Forward, that is, the volatility for a strike equal to the Forward price.

• The 25% Delta Risk Reversal (resp. 10% Delta Risk Reversal) is the difference of the 25% Delta Call
(resp. 10% Delta Call) volatility and the -25% Delta Put (resp. -10% Delta Put) volatility.

• The 25% Delta Market Strangle defines with a unique spread both the price of Market Strangle, and
the strike of each strangle leg (this point is further discussed in the next section).

The smile is not expressed as a function of the strike, and requires a specific construction procedure. In
addition, the number of input data describing the smile is low, making such a procedure unstable.

3.2 Market Strangle and Smile Strangle

The 25% Market Strangle Volatility is the volatility used to recompute the market price of the Market Stran-
gle which is the sum of:

• a call that has a strike conventionally chosen such that its delta is 25% when priced with such Market
Strangle Volatility

• a put that has a strike conventionally chosen such that its delta is -25% when priced with such Market
Strangle Volatility

In other words, the 25% Market Strangle Volatility is not only used to price the Call and Put leg, but also
defines the strike of the Call and the Put (evidently, the same convention applies to 10% Market Strangle
Volatility). In Fx Market, Market Strangle Volatilities are specified by a spread ∆σMS25 and ∆σMS10 respec-
tively against ATM volatility:

σMS25 = σATM +∆σMS25

σMS10 = σATM +∆σMS10

Market Strangle prices are input for both calibration procedures presented below, and each will have to
implement the following steps:

1. For a given delta (10% or 25% Delta) we solve the call strike and the put strike of the Market Strangle
(possibly with a basic root search procedure),
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2. From the strikes and the Market Strangle volatility, we deduce the Market Strangle prices. Those
prices are input for our calibration procedures, for convenience we introduce MS25 and MS10 the 25%
Delta Market Strangle price and 10% Delta Market Strangle price.

3. We compute the Market Strangle prices, but with different volatility for the Call and Put leg, each of
them being read on the current smile subject to calibration: we denote MSΣ

25 and MSΣ
10 the 25% Delta

Market Strangle and 10% Delta Market Strangle price found with our calibration procedure. The goal
will be to minimize the distance of computed Market Strangle from input Market Strangles prices.

Unlike the Market Strangle, the Smile Strangle is a regular strangle whose marked-to-market price is the
sum its Call and Put leg priced independently. Obviously the 25% Delta Smile Strangle will not have the
same price, neither the same strikes, as the 25% Delta Market Strangle. We define 25% Delta Smile Strangle
Spread and 10% Delta Smile Strangle Spread as:

∆σSS25 =
1
2
(
σ

C
25 +σ

P
25
)
−σATM

∆σSS10 =
1
2
(
σ

C
10 +σ

P
10
)
−σATM

where σC
25 and σP

25 (resp. σC
10 and σP

10) are the 25% Delta (resp. 10% Delta) Call volatility, and -25% Delta
(resp. -10% Delta) Put volatility.

We notice that, for a given Delta (25% or 10%), if we know both the Delta Smile Strangle Spread and
the Delta Risk Reversal, we can algebraically deduce the value of the Delta Call volatility and the Delta Put
volatility as follow:

σ
C
25 = σATM +

1
2

∆σRR25 +∆σSS25 (1)

σ
P
25 = σATM−

1
2

∆σRR25 +∆σSS25 (2)

σ
C
10 = σATM +

1
2

∆σRR10 +∆σSS10 (3)

σ
P
10 = σATM−

1
2

∆σRR10 +∆σSS10 (4)

This will be a key tenet for the first calibration approach.

4 Two Calibration methods for a Single Maturity Smile

In the following we present two methods to calibrate a maturity smile slice. The first approach is widely
inspired by the paper from Dimitri Reiswich and Uwe Wystup [3], and results in calibrated volatility as a
function of (Put) Delta.

The second approach uses the Jim Gatheral SVI [4] implied variance model and results in calibrated
variance as a function of log-moneyness (it follows immediately an expression of volatility as a function of
strike).

We show an example of calibration (6 months UsdJpy) and discuss the Pros and Cons of each method.
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4.1 Delta to Volatility Mapping function

4.1.1 General principle

Dimitri Reiswich and Uwe Wystup in [3] calibrate a function that associates to the Put delta a Volatility:

Σ : ∆
P 7−→ Σ

(
∆

P)
Put Delta is preferred as parameter to Call Delta since it is a monotonous function of the strike, making

the subsequent step (mapping strike to volatility) easier. We chose an Interpolator function Σ parametrized
by five points (∆P

i ,σi). In the next section, we define an objective function to minimize and ultimately
construct the optimal mapping function Σ.

4.1.2 Description of calibrations steps

We construct an objective function d taking two Smile Strangles variables (∆σSS25 and ∆σSS10) as arguments
(all other parameters being provided as market quotes) and returning a distance (between prices) to be
minimized.

1. Given the value of the 25% Delta Smile Strangle ∆σSS25 and 10% Delta Smile Strangle ∆σSS10, we
deduce the volatility for five different (Put) Deltas. The first two points are Put volatilities from
equations (2) and (4):

Σ(−25%) = σATM−
1
2

∆σRR25 +∆σSS25 (5)

Σ(−10%) = σATM−
1
2

∆σRR10 +∆σSS10 (6)

For the Call volatility we need to use the Call / Put Delta parity: ∆C−∆P = A, where A depends on
the delta convention (we have seen that A is not always constant and may depend on the spot and the
strike), and possibly requires a root-finding algorithm to be defined. We denote A25 and A10, the value
of A for respectively the 25% and 10% Call / Put Delta parity, and rewrite (1) and (3), as function of
put Delta:

Σ(25%−A25) = σATM +
1
2

∆σRR25 +∆σSS25 (7)

Σ(10%−A10) = σATM +
1
2

∆σRR10 +∆σSS10 (8)

The fifth point is actually given by the ATM Put Delta:

Σ(∆ATM) = σATM

Finally with five points
(
∆P

i ,σi
)

we can define our Interpolator function Σ. By construction, for all
candidate function Σ, the Risk Reversal conditions are verified (from equations (7)-(5), and (8)-(6)):

11 16



Working Paper

Σ(25%−A25)−Σ(−25%) = ∆σRR25

Σ(10%−A10)−Σ(−10%) = ∆σRR10

2. We use our mapping function Σ to compute Market Strangles prices MSΣ
25 and MSΣ

10. We know the
Market Strangles strikes (see 3.2) but not pertaining Deltas, consequently a root-finding procedure is
required once again.

3. From Market Strangles prices, we can compute a distance d to be minimized:

d (∆σSS25,∆σSS10;σATM,∆σRR25,∆σRR10) =
∣∣MS25−MSΣ

25
∣∣2 + ∣∣MS10−MSΣ

10
∣∣2

4.1.3 Remarks and Caveats

In [3] the study was restricted to a 3 points smile and the parametric function chosen was simply a second
order polynomial. The extension to a 5 points smile is more complex. Since the optimization criteria involves
the value of the functions Σ at interpolated (Put) Deltas (for the Market Strangle repricing), we must preclude
Interpolator functions that possibly produces spurious oscillations between interpolated points (for instance
we should avoid five points natural Cubic Spline Interpolator).

Beyond -10% Delta Put and 10% Delta Call, we must suggest an extrapolation solution that provides
plausible shape for extrema of the curve.

4.2 SVI parametric volatility smile

4.2.1 General principle

In this section we present an overview of the SVI (Stochastic Volatility Inspired) smile geometry. For a given
maturity, Jim Gatheral’s model [4] describes implied variance with the parametric hyperbola arc:

var (y;a,b,σ ,ρ,m) = a+b
{

ρ (y−m)+

√
(y−m)2 +σ2

}
(9)

where the log-moneyness y is defined by y = ln
(K

F

)
, and b ≥ 0, |ρ| < 1, σ > 0, and a+ bσ

√
1−ρ2 > 0

to ensure that the volatility remains positive for all log-moneyness. The SVI form has two asymptotes, that
intersect at the point (m,a):

varL (y;a,b,σ ,ρ,m) = a−b(y−m)(1−ρ)

varR (y;a,b,σ ,ρ,m) = a+b(y−m)(1+ρ)

If ρ < 0 (resp. ρ > 0) the slope of left (resp. right) asymptote varL (resp. varR) is the steepest. Another
important to define the geometry of our SVI smile is the location and the value of minimum implied variance.
We exclude the ρ =−1 and ρ = 1 cases, where the volatility is strictly increasing or decreasing. We compute
the first derivative of var with respect to the log-moneyness y:
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∂var
∂y

= b

ρ +
y−m√

(y−m)2 +σ2


we deduce the log-moneyness ymin that minimizes the implied variance (we remark that (ymin < m) if ρ > 0
and (ymin > m) if ρ < 0) is given by:

ymin = m− ρσ√
1−ρ2

The minimum value varmin = var (ymin;a,b,σ ,ρ,m) is:

varmin = a+bσ

√
1−ρ2

4.2.2 Description of calibrations steps

We introduce the volatility Σ as a function of log-moneyness:

Σ =

√
var

(T − t)

1. From the ATM strike (and corresponding log-moneyness) we get the volatility ΣAT M , and we can
compute a distance dΣ

ATM :

dΣ
ATM = |σATM−ΣAT M|2

2. We don’t have an immediate access to the Delta, so we use a root-finding algorithm and

• solve the strike of the 25% Delta Call and its pertaining volatility ΣC25,

• solve the strike of the -25% Delta Put and its pertaining volatility ΣP25,

• solve the strike of the 10% Delta Call and its pertaining volatility ΣC10,

• solve the strike of the -10% Delta Call and its pertaining volatility ΣP10,

we can then compute 25% and 10% Risk Reversals:

∆σ
Σ
RR25 = ΣC25−ΣP25

∆σ
Σ
RR10 = ΣC10−ΣP10

and define a distance dΣ
RR

dΣ
RR =

∣∣∆σRR25−∆σ
Σ
RR25

∣∣2 + ∣∣∆σRR10−∆σ
Σ
RR10

∣∣2
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3. We use our parametric smile Σ to compute Market Strangles prices MSΣ
25 and MSΣ

10. We define a
distance dΣ

MS:

dΣ
MS =

∣∣MS25−MSΣ
25
∣∣2 + ∣∣MS10−MSΣ

10
∣∣2

Finally, the distance dΣ to be minimized is:

dΣ = dΣ
MS +vega2

ATM dΣ
ATM +vega2

RR dΣ
RR

where weights vegaATM and vegaRR for price homogeneity purpose.

4.2.3 Remarks and Caveats

We can observe empirically the impact of each parameter (see [4]):

• a gives the overall level of variance

• b gives the angle between the left and right asymptotes

• σ determines how smooth the vertex is

• ρ determines the orientation of the graph

• m translates the smile left- or rightwards

This creates an issue since different parameters can have similar effects on the Forex smile, for instance
a shift of m will have an important impact on the risk reversal, and so does b and obviously rho. The fact
that parameters don’t have independent effects on the smile generally makes optimization more complicated
and the solution of calibration not unique: multiple sets of optimal parameters can be found to calibrate the
smile. In addition (and partially for the same reason), the minimization procedure shows a high dependency
on initial guesses of parameters.

Strengthening and possibly adding additional constraints is a good way to circumvent these issues.

4.3 Calibration Example: 6 Months UsdJpy

We calibrate a 6months smile slice of UsdJpy. The market data related to UsdJpy forex rate are:

• UsdJpy spot X12 = 105.28

• UsdJpy 6 months outright F12 = 106.6985

• Jpy 6 months actualization factor Act2 = 1.00017

The 6months smile is described by the 5 parameters:

σATM 0.0658
∆σRR25 -0.019
∆σMS25 0.00175
∆σRR10 -0.038
∆σMS10 0.00853
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We use the two calibration methods and we get the following smiles:

Results comparison In practice, SVI volatility is more complicated to calibrate, and requires a close
attention to the ’average’ smile geometry to define initial guesses parameters. Nevertheless, once calibrated,
the SVI implied variance is much more convenient to use, because it can be easily expressed as a function of
the strike, whereas the first approach requires the strike to be converted in delta to access the volatility and
this conversion is performed with a root-search procedure.

Obviously, the volatility curve extrema are more realistic with the SVI form than the first method. De-
spite the use of linear extrapolation for the mapping function between Delta and volatility, the first method
shows a volatility flattening for low Delta Put. We know that this method cannot deal with extreme strikes:
for extreme strikes, the Delta as a function of strike is hardly bijective, making the final mapping between
strike and volatility more error prone. Clearly, for the first method to be fully reliable, a workaround for ex-
trapolated volatilities must be further studied. In contrast, the SVI hyperbola arc offers a ’built in’ asymptotic
behavior for low delta volatility.

Applications and Next steps The main application of one maturity volatility slice calibration is obvi-
ously the calibration of the volatility smile across different maturities. Each maturity slice can be constructed
independently (while including a way to prevent butterfly arbitrage), and the main process will gather all ma-
turity slices and ensure absence of calendar arbitrage.

Another application is the creation of smile time series for a single maturity slice. Indeed, we have
seen that the low number of data describing the Forex smile makes the smile construction more difficult,
but conversely it makes the handling of smile time series easier. From time series of smile parameters
we can construct time series of calibrated smile slices and extract analytics to build other time series: for
example, from one maturity calibrated smile we can easily compute the fair variance swap strike. This is
prerequisite to analyze time series of variance swaps (for instance with the language R or Python’s packages
scipy.stats and statsmodel) and construct relevant trading strategies.

I thank Nicolas Rolland for useful remarks and comments. All remaining errors are mine.
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